<table>
<thead>
<tr>
<th>Name: Numerical Analysis</th>
<th>Professor: JungHwan Song</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail: camp123@hanyang.ac.kr</td>
<td>Home Univ.: Hanyang University</td>
</tr>
<tr>
<td>Dept.: Mathematics</td>
<td></td>
</tr>
</tbody>
</table>

Description: Theory and practice of computational procedures including (1) finding an approximated solution of a function, (2) approximation of functions by interpolating polynomials, (3) numerical differentiation and integration, (4) finding a solution of system of equations with using theories in linear algebra.

Objective: Study and practices in finding an approximated solution of a function, approximation of functions by interpolating polynomials, numerical differentiation and integration, and finding a solution of system of equations with using theories in linear algebra.

Preparations: [Numerical Methods : Faires/Burden] [pre requisites : Calculus I and II, and Linear Algebra]

Schedule:
- **Week 1**
 1. Introduction of the course, Review of Calculus.
 2. Bisection method, Fixed point method
 3. Newton method
- **Week 2**
 1. Secant method, Error Analysis
 2. **Exam1**
 3. Interpolation and Lagrange polynomial
 4. Divided difference, Hermite Interpolation
- **Week 3**
 1. Cubic Spline
 2. Numerical differentiation
 3. **Exam2**
 4. Elements of numerical integrations
- **Week 4**
 1. Composite numerical integrations, Romberg algorithm
 2. Systems of linear equations, pivoting.
 3. Iterative Techniques for solving Linear systems
 4. **Final exam**

Evaluation:
- Two Midterms (60%)
- Final (30%)
- Attendance (10%)
- Assignments (0%)
- Participation (0%)
- Etc. (0%)