Hanyang International Summer School
Office of International Affairs, Hanyang University
222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
Tel. +82-2-2220-2456 | iss@hanyang.ac.kr

2019 HISS Research Project
(Solid oxide fuel cell fabricated by electrostatic slurry spray deposition (ESSD))

Professor:
Dong Wook Shin
E-mail: dwshin@hanyang.ac.kr
Department: Materials Science and Engineering
Website http://www.nanoglass.or.kr

Laboratory Research Center Information

| Topics | All-Solid-State lithium batteries
- Effects of binary conductive additives on electrochemical performance of composite cathode for all-solid-state lithium batteries
- Solid oxide fuel cells
- Solid oxide fuel cell fabricated by electrostatic slurry spray deposition (ESSD) |
|---|---|
| Activities | All-Solid-State lithium batteries
- Design of composition for all-solid-state composite cathode
- All-solid-state cell fabrication & assembly
- Electrochemical analysis & performance evaluation of all-solid-state cell
- Learning of tools such as Scanning Electron Microscope (SEM) etc. for material property analysis
- Solid oxide fuel cells
- Microstructure control to improve catalyst activity and stability
- Material synthesis and slurry fabrication for solid oxide fuel cell
- Application of electrostatic slurry spray deposition in various fields |
| Achievement | All-Solid-State lithium batteries
- Proposal for government-funded projects
- Projects with major battery companies in Korea (LG Chem., Hyundai motor company)
- Publish more than 3 articles per year
- Major technology transfer
- Solid oxide fuel cells
- Proposal for government-funded projects
- Transfer of technology related to the electrostatic slurry spray deposition to industry
- Published a paper in the 2018 nature energy |
| Pre-requisite & Eligibility | All-Solid-State lithium batteries & Solid oxide fuel cells
- Materials Science & Engineering
- Electrochemistry |

Relevant Experience

- Basic of lithium ion batteries & solid oxide fuel cells

- All-Solid-State lithium batteries & Solid oxide fuel cells
- Electrochemistry / basic of lithium ion batteries & solid oxide fuel cells (not required but recommended)

Language

- English speaking and writing
- Beginner-level Korean skills

Objective & Description:

The student is asked to design and build all-solid-state lithium batteries & solid oxide fuel cells based on electrochemical and materials science engineering knowledge. The behavior & phenomenon of the all-solid-state lithium batteries can be observed and understood through the acquired knowledge.

Project Duration

6 weeks

Project Hours:

minimum 80 hours

Weekly Topic & Activities

Student Assignment

Week 1

- All-Solid-State lithium batteries
 - Introduction
 - Literature survey
 - Overview of all-solid-state lithium batteries & Solid oxide fuel cells

- All-Solid-State lithium batteries & Solid oxide fuel cells
 - Report on all-solid-state lithium batteries & Solid oxide fuel cells (<10 pages)
 - Report on basin principle of electrochemistry

Week 2

- All-Solid-State lithium batteries
 - Design of composite cathode
 - Fabrication & assembly of all-solid-state cell

- Solid oxide fuel cells
 - Synthesis of materials for solid oxide fuel cells fabrication and slurry production

- All-Solid-State lithium batteries & Solid oxide fuel cells
 - Writing down of the experiment report

Week 3

- All-Solid-State lithium batteries
 - Design of composite cathode
 - Fabrication & assembly of all-solid-state cell
 - Testing and system optimization

- Solid oxide fuel cells
 - Half-cell fabricated by electrostatic slurry deposition

- All-Solid-State lithium batteries & Solid oxide fuel cells
 - Writing down of the experiment report

Week 4

- All-Solid-State lithium batteries
 - Electrochemical analysis (Charge-discharge characteristics, Electrochemical impedance spectroscopy)

- Solid oxide fuel cells

- All-Solid-State lithium batteries & Solid oxide fuel cells
 - Writing down of the experiment report
<table>
<thead>
<tr>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Single-cell fabricated by electrostatic slurry deposition</td>
<td>- All-Solid-State lithium batteries & Solid oxide fuel cells</td>
</tr>
<tr>
<td>- All-Solid-State lithium batteries</td>
<td>- All-Solid-State lithium batteries & Solid oxide fuel cells</td>
</tr>
<tr>
<td>- Materials property analysis (Microstructure observation on SEM analysis)</td>
<td>- Writing down of the experiment report</td>
</tr>
<tr>
<td>- Solid oxide fuel cells</td>
<td>- All-Solid-State lithium batteries & Solid oxide fuel cells</td>
</tr>
<tr>
<td>- Materials property analysis (Microstructure observation on SEM analysis & XRD)</td>
<td>- Electrochemical analysis (Electrochemical impedance spectroscopy)</td>
</tr>
<tr>
<td>- Preparation for final presentation</td>
<td>- Preparation for final presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Attendance</th>
<th>Report including weekly report</th>
<th>Final Presentation or Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30%</td>
<td>40%</td>
<td>30%</td>
</tr>
</tbody>
</table>